
Global Variables,
Arrays,

and Pointers

I. Global Variables
We allocate local variables as part of the stack frame for the
function that declares the variable. Global variables, on the other
hand, will be allocated in the main data segment. At the start of
the assembly language file, before the .rodata segment, we will
have a set of .comm directives that declare global variables and
global arrays. The format of these is

 .comm <symbol>, <num bytes>, <alignment>

This creates a memory location referenced by the symbol that
holds the specified number of bytes. The alignment field is
optional; if used it guarantees that the address of this location is a
multiple of the alignment. I use 32 for the alignment because the
gcc compiler does, but this is optional and you can just omit the
alignment field.

For example, if a BPL program declares a global integer variable X, I
write into the code file
 .comm X, 8, 32
It is easy to do this by walking along the top-level declarations of the
program.

If you have the declaration above and a line in the program assigns X
the value 23, the code you need to generate is
 movq X, %rax # move the l-value of X into %rax
 push %rax
 movl $23, %eax
 pop %rsi # pop the address of X into a temp register
 movl %eax, 0(%rsi)
In other words, we use the symbol X as the address of this location. If
you groove on terminology, movq X, %rax uses "absolute address
mode" while movl $23, %eax uses "immediate address mode"

II. Strings
BPL only allows string constants. We want to allocate them in the
.rodata section, along with the strings we use for I/O. To achieve
this I make a pass through the complete program building up a
string table of all of the strings that appear in the program. The
string table is a hashmap where each string is mapped to a
symbol: .S1, .S2, etc. The keys of a hashmap are unique, so this
means that any particular string appears in the table only once.
We could use the same labels for strings as we do for branch
destinations in the code, but I find that having separate labels for
strings makes the code file easier to read. If we need to load a
string into the accumulator, as we would with the code
 write("Hi, Mom!")
we can look up the string in the string table to gets its label. If
that label is .S3 we would generate the code
 movq .S3, %rax

III. Arrays
The BPL specification calls for bounds checking on all indexing of a
arrays. Let's skip over that for the time being. You can think of an
array of length n as a block of n consecutive integer or string
variables. To make indexing a little more uniform, I allocate 8
bytes for each entry, whether the base type is int or string. For a
global array A of length 10 I use a .comm directive:
 .comm A, 80, 32
For a local array of length 10 declared within a function I just
decrement the stack pointer by 80 bytes when I enter the
function.

The two main actions we have for arrays are
 a) indexing them, as in A[i]
 b) passing them as arguments in a function

Suppose we want to put the value of A[i+1] into the accumulator.
We do the following steps:

a. put the value of A, the starting address of the array, into
%rax.

b. push %rax
c. generate code to put the value of i+1 into %eax.
d. multiply %eax by 8
e. pop the stack (with the starting address of A) into a

temporary register such as %rsi
f. Add %rax onto %rsi. This gives the address of A[i]
g. movl 0(%rsi), %eax

Step (a) depends on what kind of declaration we have for A. If it is a
global array this will be
 movq A, %rax
If A is the 1st parameter to the current function the starting address
of the array will be on the stack.
 movq -16(%rbx), %rax

Finally, if A is a local variable, perhaps with position 2, we get its
starting address as an offset of -24 from the frame pointer:
 movq %rbx, %rax
 addq -24, %rax

Obtaining the value of an array A to use as an argument is the same
as the first step in the sequence above.

If you want to implement bounds checking, arrays need to carry
around their lengths. One way to achieve this is to allocate n+1 values
for an array of size n, and to write into the starting address the length
(which is known at compile time). We find the value of A[i] at offset
8*(i+1) from the starting address of A. To do bounds checking, put
the length of A into a temporary register such as %esi by first putting
the starting address of A into %rax, then
 movl 0(%rax), %esi
You will need the starting address of A, so push %rax onto the stack.

Next, generate code to put the index into %eax. You need to do 2
comparisons on %eax. If it is negative, you have a bad index. If the
value in %eax is larger than or equal to the value you saved in %esi
(the length of A), you have a bad index. In either bad situation print
an error message and use the C exit() routine to leave the program. If
you pass both comparisons add 1 to %eax, multiply it by 8, and add
the value at the top of the stack (the starting address of A) onto %rax.
This is the address of A[i]. You dereference this
 movl 0(%rax), %eax
to get the value of A[i]. Of course, if A is an array of strings you would
need
 movq 0(%rax), %rax

IV. Pointers
By this point you have already done all of the steps you need for
the two pointer operations &x and *p. There are only a few
things you can apply the & operator to: variables and array
elements. Your tree structure should tell you which of those cases
you are in. Finding the address of a variable depends on how it
was declared: global, parameter, or local. Finding the address of
an array element again depends on how the array was declared.
Since you need exactly the same code for this as for finding L-
values for assignment expressions, you might want to write a
function for generating L-values and leaving them in the
accumulator.

The dereferencing operator *p is even easier. We generate code
to put the value of p into %rax, then dereference it with
 movl 0(%rax), %rax

