
Global Variables,  
Arrays, 

and Pointers 



I. Global Variables 
We allocate local variables as part of the stack frame for the 
function that declares the variable.  Global variables, on the other 
hand, will be allocated in the main data segment.  At the start of 
the assembly language file, before the .rodata segment, we will 
have a set of .comm directives that declare global variables and 
global arrays.  The format of these is 
 
 .comm <symbol>, <num bytes>, <alignment> 
 
This creates a memory location referenced by the symbol that 
holds the specified number of bytes.  The alignment field is 
optional; if used it guarantees that the address of this location is a 
multiple of the alignment.  I use 32 for the alignment because the 
gcc compiler does, but this is optional and you can just omit the 
alignment field.  



For example, if a BPL program declares a global integer variable X, I 
write into the code file 
 .comm X, 8, 32 
It is easy to do this by walking along the top-level declarations of the 
program. 
 
If you have the declaration above and a line in the program assigns X 
the value 23, the code you need to generate is 
 movq X, %rax  # move the l-value of X into %rax 
 push %rax 
 movl $23, %eax 
 pop %rsi         # pop the address of X into a temp register 
 movl %eax, 0(%rsi) 
In other words, we use the symbol X as the address of this location.  If 
you groove on terminology, movq X, %rax uses "absolute address 
mode" while movl $23, %eax uses "immediate address mode" 
 



II. Strings 
BPL only allows string constants.  We want to allocate them in the 
.rodata section, along with the strings we use for I/O.  To achieve 
this I make a pass through the complete program building up a 
string table of all of the strings that appear in the program.  The 
string table is a hashmap where each string is mapped to a 
symbol: .S1, .S2, etc.  The keys of a  hashmap are unique, so this 
means that any particular string appears in the table only once.  
We could use the same labels for strings as we do for branch 
destinations in the code, but I find that  having separate labels for 
strings makes the code file easier to read.  If we need to load a 
string into the accumulator, as we would with the code 
 write( "Hi, Mom!" ) 
we can look up the string in the string table to gets its label.  If 
that label is .S3 we would generate the code 
 movq .S3, %rax 



III. Arrays 
The BPL specification calls for bounds checking on all indexing of a 
arrays. Let's skip over that for the time being.  You can think of an 
array of length n as a block of n consecutive integer or string 
variables.  To make indexing a little more uniform, I allocate 8 
bytes for each entry, whether the base type is int or string.  For a 
global array A of length 10 I use a .comm directive: 
 .comm A, 80, 32 
For a local array of length 10 declared within a function I just 
decrement the stack pointer by 80 bytes when I enter the 
function. 
 
The two main actions we have for arrays are 
 a) indexing them, as in A[i] 
 b) passing them as arguments in a function 



Suppose we want to put the value of A[i+1] into the accumulator.  
We do the following steps: 

a. put the value of A, the starting address of the array, into 
%rax. 

b. push %rax 
c. generate code to put the value of i+1 into %eax. 
d. multiply %eax by 8 
e. pop the stack (with the starting address of A) into a 

temporary register such as %rsi 
f. Add %rax onto %rsi. This gives the address of A[i] 
g. movl 0(%rsi), %eax 
 

Step (a) depends on what kind of declaration we have for A.  If it is a 
global array this will be 
 movq A, %rax 
If A is the 1st parameter to the current function the starting address 
of the array will be  on the stack. 
 movq -16(%rbx), %rax 

 



Finally, if A is a local variable, perhaps with position 2, we get its 
starting address as an offset of -24 from the frame pointer: 
 movq %rbx, %rax 
 addq -24, %rax 
 
Obtaining the value of an array A to use as an argument is the same 
as the first step in the sequence above. 
 
If you want to implement bounds checking, arrays need to carry 
around their lengths. One way to achieve this is to allocate n+1 values 
for an array of size n, and to write into the starting address the length 
(which is known at compile time).  We find the value of A[i] at offset 
8*(i+1) from the starting address of A.  To do bounds checking, put 
the length of A into a temporary register such as %esi by first putting 
the starting address of A into %rax, then 
 movl 0(%rax), %esi 
You will need the starting address of A, so push %rax onto the stack. 
 



Next, generate code to put the index into %eax.  You need to do 2 
comparisons on %eax.  If it is negative, you have a bad index.  If the 
value in %eax is larger than or equal to the value you saved in %esi 
(the length of A), you have a bad index.  In either bad situation print 
an error message and use the C exit() routine to leave the program.  If 
you pass both comparisons add 1 to %eax, multiply it by 8, and add 
the value at the top of the stack (the starting address of A) onto %rax.  
This is the address of A[i].  You dereference this 
 movl 0(%rax), %eax 
to get the value of A[i].  Of course, if A is an array of strings you would 
need 
 movq 0(%rax), %rax 
 



IV. Pointers 
By this point you have already done all of the steps you need for 
the two pointer operations &x and *p.  There are only a few 
things you can apply the & operator to: variables and array 
elements. Your tree structure should tell you which of those cases 
you are in.  Finding the address of a variable depends on how it 
was declared: global, parameter, or local.  Finding the address of 
an array element again depends on how the array was declared.  
Since you need exactly the same code for this as for finding L-
values for assignment expressions, you might want to write a 
function for generating L-values and leaving them in the 
accumulator. 
 
The dereferencing operator *p is even easier.  We generate code 
to put the value of p into %rax, then dereference it with 
 movl 0(%rax), %rax  


